Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Correlated excited states in the narrow band gap semiconductor FeSi and antiferromagnetic screening of local spin moments

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Correlated excited states in the narrow band gap semiconductor FeSi and antiferromagnetic screening of local spin moments

0 Datasets

0 Files

English
2018
Physical review. B./Physical review. B
Vol 98 (12)
DOI: 10.1103/physrevb.98.125205

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Kresse Georg
Kresse Georg

University of Vienna

Verified
Sergii Khmelevskyi
Kresse Georg
P. Mohn

Abstract

The physical properties of the semiconductor FeSi with very narrow band gap, anomalous behavior of the magnetic susceptibility and metal-insulator transition at elevated temperatures attract great interest due to the still controversial theoretical understanding of their origin. On one side the purely bandlike mechanism of the gap formation in FeSi at low temperature is well established; on the other side a number of experiments and their theoretical interpretation suggest a rich physics of strong correlations at finite temperature. In this work we use an ab initio scheme based on the random-phase approximation and local spin-density approximation (RPA@LSDA) to reveal the role of the electron correlation effects in FeSi extending it by applying a fixed spin moment constraint. In the parameter-free framework we show that correlation effects essentially alter the one-electron LSDA results leading to the formation of an additional state with finite magnetic moment on Fe, whose energy is almost degenerate with the nonmagnetic ground state. This explains the results of high-field experiments, which found a first-order metamagnetic phase transition into a metallic ferromagnetic state. Our results suggest a strongly correlated nature of the low-energy excitations in FeSi. From our supercells calculations we reveal that these excitations are local and exhibit a Kondo-like behavior since a strong antiferromagnetic screening is present.

How to cite this publication

Sergii Khmelevskyi, Kresse Georg, P. Mohn (2018). Correlated excited states in the narrow band gap semiconductor FeSi and antiferromagnetic screening of local spin moments. Physical review. B./Physical review. B, 98(12), DOI: 10.1103/physrevb.98.125205.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Physical review. B./Physical review. B

DOI

10.1103/physrevb.98.125205

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration