0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe modulated hydrothermal (MHT) synthesis of an active and selective Hf-MOF-808 material for the N-alkylation reaction of aniline with benzyl alcohol under base-free mild reaction conditions is reported. Through kinetic experiments and isotopically labeled NMR spectroscopy studies, we have demonstrated that the reaction mechanism occurs via borrowing hydrogen (BH) pathway, in which the alcohol dehydrogenation is the limiting step. The high concentration of defective -OH groups generated on the metallic nodes through MHT synthesis enhances the alcohol activation, while the unsaturated Hf4+, which acts as a Lewis acid site, is able to borrow the hydrogen from the methylene position of benzyl alcohol. This fact makes this material at least 14 times more active for the N-alkylation reaction than the material obtained via solvothermal synthesis. The methodology described in this work could be applied to a wide range of aniline and benzyl alcohol derivates, showing in all cases high selectivity toward the corresponding N-benzylaniline product. Finally, Hf-MOF-808, which acts as a true heterogeneous catalyst, can be reused in at least four consecutive runs without any activity loss.
Benjamin Bohigues, Sergio Rojas‐Buzo, Manuel Moliner, Avelino Avelino (2021). Coordinatively Unsaturated Hf-MOF-808 Prepared via Hydrothermal Synthesis as a Bifunctional Catalyst for the Tandem <i>N</i>-Alkylation of Amines with Benzyl Alcohol. ACS Sustainable Chemistry & Engineering, 9(47), pp. 15793-15806, DOI: 10.1021/acssuschemeng.1c04903.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
ACS Sustainable Chemistry & Engineering
DOI
10.1021/acssuschemeng.1c04903
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access