Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Convolutional Features-Based Broad Learning With LSTM for Multidimensional Facial Emotion Recognition in Human–Robot Interaction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Convolutional Features-Based Broad Learning With LSTM for Multidimensional Facial Emotion Recognition in Human–Robot Interaction

0 Datasets

0 Files

en
2023
Vol 54 (1)
Vol. 54
DOI: 10.1109/tsmc.2023.3301001

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Luefeng Chen
Min Li
Min Wu
+2 more

Abstract

Convolutional feature-based broad learning with long short-term memory (CBLSTM) is proposed to recognize multidimensional facial emotions in human–robot interaction. The CBLSTM model consists of convolution and pooling layers, broad learning (BL), and long- and short-term memory network. It aims to obtain the depth, width, and time scale information of facial emotion through three parts of the model, so as to realize multidimensional facial emotion recognition. CBLSTM adopts the structure of BL after processing was done at the convolution and pooling layer to replace the original random mapping method and extract features with more representation ability, which significantly reduces the computational time of the facial emotion recognition network. Moreover, we adopted incremental learning, which can quickly reconstruct the model without a complete retraining process. Experiments on three databases are developed, including CK+, MMI, and SFEW2.0 databases. The experimental results show that the proposed CBLSTM model using multidimensional information produces higher recognition accuracy than that without time scale information. It is 1.30% higher on the CK+ database and 1.06% higher on the MMI database. The computation time is 9.065 s, which is significantly shorter than the time reported for the convolutional neural network (CNN). In addition, the proposed method obtains improvement compared to the state-of-the-art methods. It improves the recognition rate by 3.97%, 1.77%, and 0.17% compared to that of CNN-SIPS, HOG-TOP, and CMACNN in the CK+ database, 5.17%, 5.14%, and 3.56% compared to TLMOS, ALAW, and DAUGN in the MMI database, and 7.08% and 2.98% compared to CNNVA and QCNN in the SFEW2.0 database.

How to cite this publication

Luefeng Chen, Min Li, Min Wu, Witold Pedrycz, Kaoru Hirota (2023). Convolutional Features-Based Broad Learning With LSTM for Multidimensional Facial Emotion Recognition in Human–Robot Interaction. , 54(1), DOI: https://doi.org/10.1109/tsmc.2023.3301001.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tsmc.2023.3301001

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access