0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUsing the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete basis set (CBS) limit in methods utilising plane-wave wavefunction expansions. Simple analytic and numerical results from second-order M{\o}ller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis set truncation when constructing many-electron wavefunctions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wavefunction methods, from MP2 to coupled-cluster doubles theory (CCD) and the random-phase approximation plus second-order screened exchange (RPA+SOSEX). Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane wave basis and thereby allow application of these methods to more realistic physical problems.
James J. Shepherd, Andreas Grüneis, George H. Booth, Kresse Georg, Ali Alavi (2012). Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems. Physical Review B, 86(3), DOI: 10.1103/physrevb.86.035111.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Physical Review B
DOI
10.1103/physrevb.86.035111
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access