0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNoble-metal nanocrystals with well-defined and controllable morphologies are of great importance to applications in catalysis, plasmonics, and surface-enhanced spectroscopy. Many synthetic approaches have been demonstrated for controlling the growth habit and thus morphology of metal nanocrystals, but most of them are based on a thermodynamic approach, including the use of a capping agent. While thermodynamic control has shown its power in generating nanocrystals with a myriad of different morphologies, it is ultimately limited by the obligation to minimize the surface energy of a system. As a result, it is impractical to use thermodynamic control to generate nanocrystals having high-energy facets and/or a negative curvature. Using rhodium as an example, here we demonstrate a general method based on kinetic control with a syringe pump that can be potentially extended to other noble metals and even other solid materials. For the first time, we were able to produce concave nanocubes with a large fraction of {110} facets and octapods with a cubic symmetry in high yields by simply controlling the injection rate at which the precursor was added into the reaction solution. The concave nanocubes with {110} facets and a unique cavity structure on the surface are important for a variety of applications.
Hui Zhang, Weiyang Li, Mingshang Jin, Jie Zeng, Taekyung Yu, Deren Yang, Younan Xia (2010). Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. , 11(2), DOI: https://doi.org/10.1021/nl104347j.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl104347j
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access