0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPlatinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive element, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed ∼10 times higher specific and ∼6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.
Nigel Becknell, Yoonkook Son, Dohyung Kim, Dongguo Li, Yi Yu, Zhiqiang Niu, Lei Teng, Brian T. Sneed, Karren L. More, Nenad M. Marković, Vojislav R. Stamenković, Peidong Yang (2017). Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts. , 139(34), DOI: https://doi.org/10.1021/jacs.7b05584.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.7b05584
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access