Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Contour detection and image segmentation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Article
en
2009

Contour detection and image segmentation

0 Datasets

0 Files

en
2009
Vol 99 (6)
Vol. 99
DOI: 10.2340/00015555-3135www2.eecs.berkeley.edu/Pubs/TechRpts/2009…

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jitendra Malik
Jitendra Malik

University of California, Berkeley

Verified
Jitendra Malik
Michael Maire

Abstract

This thesis investigates two fundamental problems in computer vision: contour detection and image segmentation. We present new state-of-the-art algorithms for both of these tasks. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. Our approach to contour detection couples multiscale local brightness, color, and texture cues to a powerful globalization framework using spectral clustering. The local cues, computed by applying oriented gradient operators at every location in the image, define an affinity matrix representing the similarity between pixels. From this matrix, we derive a generalized eigenproblem and solve for a fixed number of eigenvectors which encode contour information. Using a classifier to recombine this signal with the local cues, we obtain a large improvement over alternative globalization schemes built on top of similar cues. To produce high-quality image segmentations, we link this contour detector with a generic grouping algorithm consisting of two steps. First, we introduce a new image transformation called the Oriented Watershed Transform for constructing a set of initial regions from an oriented contour signal. Second, using an agglomerative clustering procedure, we form these regions into a hierarchy which can be represented by an Ultrametric Contour Map, the real-valued image obtained by weighting each boundary by its scale of disappearance. This approach outperforms existing image segmentation algorithms on measures of both boundary and segment quality. These hierarchical segmentations can optionally be further refined by user-specified annotations. While the majority of this work focuses on processing static images, we also develop extensions for video. In particular, we augment the set of static cues used for contour detection with a low-level motion cue to create an enhanced boundary detector. Using optical flow in conjunction with this detector enables the determination of occlusion boundaries and assignment of figure/ground labels in video.

How to cite this publication

Jitendra Malik, Michael Maire (2009). Contour detection and image segmentation. , 99(6), DOI: https://doi.org/10.2340/00015555-3135.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2009

Authors

2

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.2340/00015555-3135

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access