Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking

0 Datasets

0 Files

en
2022
Vol 10 (4)
Vol. 10
DOI: 10.3390/math10040618

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
XU Bao-guo
Wenlong Li
Deping Liu
+4 more

Abstract

The controlling of robotic arms based on brain–computer interface (BCI) can revolutionize the quality of life and living conditions for individuals with physical disabilities. Invasive electroencephalography (EEG)-based BCI has been able to control multiple degrees of freedom (DOFs) robotic arms in three dimensions. However, it is still hard to control a multi-DOF robotic arm to reach and grasp the desired target accurately in complex three-dimensional (3D) space by a noninvasive system mainly due to the limitation of EEG decoding performance. In this study, we propose a noninvasive EEG-based BCI for a robotic arm control system that enables users to complete multitarget reach and grasp tasks and avoid obstacles by hybrid control. The results obtained from seven subjects demonstrated that motor imagery (MI) training could modulate brain rhythms, and six of them completed the online tasks using the hybrid-control-based robotic arm system. The proposed system shows effective performance due to the combination of MI-based EEG, computer vision, gaze detection, and partially autonomous guidance, which drastically improve the accuracy of online tasks and reduce the brain burden caused by long-term mental activities.

How to cite this publication

XU Bao-guo, Wenlong Li, Deping Liu, Kun Zhang, Minmin Miao, Guozheng Xu, Aiguo Song (2022). Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking. , 10(4), DOI: https://doi.org/10.3390/math10040618.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.3390/math10040618

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access