0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract High energy photons originating from the Galactic Center (GC) region have the potential to undergo significant photon-axion-like particle (ALP) oscillation effects, primarily induced by the presence of intense magnetic fields in this region. Observations conducted by imaging atmospheric Cherenkov telescopes have detected very high energy gamma-rays originating from a point source known as HESS J1745-290, situated in close proximity to the GC. This source is conjectured to be associated with the supermassive black hole Sagittarius A * . The GC region contains diverse structures, including molecular clouds and non-thermal filaments, which collectively contribute to the intricate magnetic field configurations in this region. By utilizing a magnetic field model specific in the GC region, we explore the phenomenon of photon-ALP oscillations in the gamma-ray spectrum of HESS J1745-290. Our analysis does not reveal any discernible signature of photon-ALP oscillations, yielding significant constraints that serve as a complement to gamma-ray observations of extragalactic sources across a broad parameter region. The uncertainties arising from the outer Galactic magnetic field models have minor impacts on our results, except for ALP masses around 10 -7 eV, as the dominant influence originates from the intense magnetic field strength in the inner GC region.
Ben-Yang Zhu, Xiaoyuan Huang, Peng‐Fei Yin (2025). Constraints on axion-like particles from the gamma-ray observation of the Galactic Center. , 2025(01), DOI: https://doi.org/10.1088/1475-7516/2025/01/030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1088/1475-7516/2025/01/030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access