0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessConcrete confined using fiber-reinforced polymer (FRP) composites experience significant enhancements in strength and strain. For the seismic retrofitting of existing reinforced concrete (RC) structures, a large rupture strain (LRS) FRP (i.e., polyethylene terephthalate and naphthalate, denoted as PET and PEN respectively), with a larger rupture strain of more than 5%, is a promising alternative to conventional FRPs with a rupture strain of less than 3%. The majority of analytical models on the stress–strain behavior of FRP-confined concrete under axial compression have focused largely on concrete confined with the traditional FRP material. Analytical research on LRS FRP-confined concrete is, however, limited. Moreover, all existed stress–strain models were determined based on theoretical analysis and test data fitting. In this paper, the artificial neural networks (ANN) method is employed to build a confinement model directly from experimental data to predict the different components of the stress–strain response. A test database consisting of 226 axial compression tests on LRS FRP-confined concrete specimens is used. The test results, in terms of full confined stress–strain response, strength, strain, FRP rupture strain, and dilation response were investigated. Predictive expressions and practical ANN models for the strength, strain, and shape of an axial stress–strain response are provided. Existing models for LRS FRP-confined concrete were also evaluated. The results of the existing and proposed models report that the proposed methods achieve significantly better results.
Haytham F. Isleem, Peng Feng, Bassam A. Tayeh (2021). Confinement model for LRS FRP-confined concrete using conventional regression and artificial neural network techniques. Composite Structures, 279, pp. 114779-114779, DOI: 10.1016/j.compstruct.2021.114779.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Composite Structures
DOI
10.1016/j.compstruct.2021.114779
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access