Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Configurable DSS for Uncertainty Management by Fuzzy Sets

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Configurable DSS for Uncertainty Management by Fuzzy Sets

0 Datasets

0 Files

English
2016
Procedia Computer Science
Vol 83
DOI: 10.1016/j.procs.2016.04.217

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Alberto Patino Vanegas
Alberto Patino Vanegas

Institution not specified

Verified
M. M. E. Alemany
Andrés Boza
Ángel Ortíz
+1 more

Abstract

In this paper, we propose a Configurable Model Based DSS capable of dealing with generic problems being modeled by Linear Programming (LP) and by Fuzzy Sets (FS) in a deterministic and uncertain context, respectively. The DSS assumes the transformation of the original model with fuzzy coefficients into an equivalent crisp model where the fuzzy coefficients are represented as alpha-parametric values, which can vary in a predefined interval based on the alpha parameter. Through the DSS, solutions obtained by solving the deterministic model and the equivalent crisp model for different alpha-values are compared based on the objectives and performance parameters defined by the Decision Maker (DM). Due to the uncertainty in data, expected performance of solutions can change under real situations. The DSS allows simulating future real situations by generating different projections of uncertain parameters. New performance of previously generated solutions can be tested under these hypothetical real situations by means a third model (Model for the Real Performance Assessment). Finally, the DM can choose the solution to be implemented taking into account the performance of solutions under planned and real uncertainty.

How to cite this publication

M. M. E. Alemany, Andrés Boza, Ángel Ortíz, Alberto Patino Vanegas (2016). Configurable DSS for Uncertainty Management by Fuzzy Sets. Procedia Computer Science, 83, pp. 1019-1024, DOI: 10.1016/j.procs.2016.04.217.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Procedia Computer Science

DOI

10.1016/j.procs.2016.04.217

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access