Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Compressive Strength Prediction of BFRC Based on a Novel Hybrid Machine Learning Model

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Compressive Strength Prediction of BFRC Based on a Novel Hybrid Machine Learning Model

0 Datasets

0 Files

English
2023
Buildings
Vol 13 (8)
DOI: 10.3390/buildings13081934

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jiayan Zheng
Jiayan Zheng

Institution not specified

Verified
Jiayan Zheng
Tianchen Yao
Jianhong Yue
+2 more

Abstract

Basalt fiber-reinforced concrete (BFRC) represents a form of high-performance concrete. In structural design, a 28-day resting period is required to achieve compressive strength. This study extended an extreme gradient boosting tree (XGBoost) hybrid model by incorporating genetic algorithm (GA) optimization, named GA-XGBoost, for the projection of compressive strength (CS) on BFRC. GA optimization may reduce many debugging efforts and provide optimal parameter combinations for machine learning (ML) algorithms. The XGBoost is a powerful integrated learning algorithm with efficient, accurate, and scalable features. First, we created and provided a common dataset using test data on BFRC strength from the literature. We segmented and scaled this dataset to enhance the robustness of the ML model. Second, to better predict and evaluate the CS of BFRC, we simultaneously used five other regression models: XGBoost, random forest (RF), gradient-boosted decision tree (GBDT) regressor, AdaBoost, and support vector regression (SVR). The analysis results of test sets indicated that the correlation coefficient and mean absolute error were 0.9483 and 2.0564, respectively, when using the GA-XGBoost model. The GA-XGBoost model demonstrated superior performance, while the AdaBoost model exhibited the poorest performance. In addition, we verified the accuracy and feasibility of the GA-XGBoost model through SHAP analysis. The findings indicated that the water–binder ratio (W/B), fine aggregate (FA), and water–cement ratio (W/C) in BFRC were the variables that had the greatest effect on CS, while silica fume (SF) had the least effect on CS. The results demonstrated that GA-XGBoost exhibits exceptional accuracy in predicting the CS of BFRC, which offers a valuable reference for the engineering domain.

How to cite this publication

Jiayan Zheng, Tianchen Yao, Jianhong Yue, Wang Ming-hui, Shuangchen Xia (2023). Compressive Strength Prediction of BFRC Based on a Novel Hybrid Machine Learning Model. Buildings, 13(8), pp. 1934-1934, DOI: 10.3390/buildings13081934.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Buildings

DOI

10.3390/buildings13081934

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access