0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA critical problem facing data collection in structural health monitoring, for instance via sensor networks, is how to extract the main components and useful features for damage detection. A structural dynamic measurement is more often a complex time-varying process and therefore, is prone to dynamic changes in time-frequency contents. To extract the signal components and capture the useful features associated with damage from such non-stationary signals, a technique that combines the time and frequency analysis and shows the signal evolution in both time and frequency is required. Wavelet analyses have proven to be a viable and effective tool in this regard. Wavelet transform (WT) can analyze different signal components and then comparing the characteristics of each signal with a resolution matched to its scale. However, the challenge is the selection of a proper wavelet since various wavelets with varied properties that are to analyze the same data may result in different results. This article presents a study on how to carry out a comparative analysis based on analytic wavelet scalograms, using structural dynamic acceleration responses, to evaluate the effectiveness of various wavelets for damage detection in civil structures. The scalogram’s informative time-frequency regions are examined to analyze the variation of wavelet coefficients and show how the frequency content of a signal changes over time to detect transient events due to damage. Subsequently, damage-induced changes are tracked with time-frequency representations. Towards this aim, energy distribution and sharing information are investigated. The undamaged and damaged simulated comparative results of a structure reveal that the damaged structure were shifted from the undamaged structure. Also, the Bump wavelet shows the best results than the others.
Ahmed Silik, Mohammad Noori, Wael A. Altabey, Ramin Ghiasi, Zhishen Wu (2021). Comparative Analysis of Wavelet Transform for Time-Frequency Analysis and Transient Localization in Structural Health Monitoring. Structural durability & health monitoring, 15(1), pp. 1-22, DOI: 10.32604/sdhm.2021.012751.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Structural durability & health monitoring
DOI
10.32604/sdhm.2021.012751
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access