RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Collecting training data to map forest management at global scale

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Collecting training data to map forest management at global scale

0 Datasets

0 Files

English
2021
DOI: 10.5194/egusphere-egu21-15297

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dmitry Schepaschenko
Dmitry Schepaschenko

Institution not specified

Verified
Myroslava Lesiv
Dmitry Schepaschenko
Martina Dürauer
+3 more

Abstract

<p>Spatially explicit information on forest management at a global scale is critical for understanding the current status of forests for sustainable forest management and restoration. Whereas remotely sensed based datasets, developed by applying ML and AI algorithms, can successfully depict tree cover and other land cover types, it has not yet been used to depict untouched forest and different degrees of forest management. We show for the first time that with sufficient training data derived from very high-resolution imagery a differentiation within the tree cover class of various levels of forest management is possible.</p><p>In this session, we would like to present our approach for labeling forest related training data by using Geo-Wiki application (https://www.geo-wiki.org/). Moreover, we would like to share a new open global training data set on forest management we collected from a series of Geo-Wiki campaigns. In February 2019, we organized an expert workshop to (1) discuss the variety of forest management practices that take place in different parts of the world; (2) generalize the definitions for the application at global scale; (3) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (4) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the volunteers. We involved forest experts from different regions around the world to explore what types of forest management information could be collected from visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE). Based on the results of this analysis, we expanded these campaigns by involving a broader group of participants, mainly people recruited from remote sensing, geography and forest research institutes and universities.</p><p>In total, we collected forest data for approximately 230 000 locations globally. These data are of sufficient density and quality and therefore could be used in many ML and AI applications for forests at regional and local scale.  We also provide an example of ML application, a remotely sensed based global forest management map at a 100 m resolution (PROBA-V) for the year 2015. It includes such classes as intact forests, forests with signs of human impact, including clear cuts and logging, replanted forest, woody plantations with a rotation period up to 15 years, oil palms and agroforestry. The results of independent statistical validation show that the map’s overall accuracy is 81%.</p>

How to cite this publication

Myroslava Lesiv, Dmitry Schepaschenko, Martina Dürauer, Marcel Buchhorn, Ivelina Georgieva, Steffen Fritz (2021). Collecting training data to map forest management at global scale. , DOI: 10.5194/egusphere-egu21-15297.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu21-15297

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access