0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCoaxial core/shell nanowires represent an important class of nanoscale building blocks with substantial potential for exploring new concepts and materials for solar energy conversion. Here, we report the first experimental realization of coaxial group III−nitride nanowire photovoltaic (PV) devices, n-GaN/i-InxGa1−xN/p-GaN, where variation of indium mole fraction is used to control the active layer band gap and hence light absorption. Current−voltage data reveal clear diode characteristics with ideality factors from 3.9 to 5.6. Electroluminescence measurements demonstrate tunable emission from 556 to 371 nm and thus confirm band gap variations in the InxGa1−xN active layer from 2.25 to 3.34 eV as In composition is varied. Simulated one-sun AM 1.5G illumination yielded open-circuit voltages (Voc) from 1.0 to 2.0 V and short-circuit current densities (Jsc) from 0.39 to 0.059 mA/cm2 as In composition is decreased from 0.27 to 0 and a maximum efficiency of ∼0.19%. The n-GaN/i-InxGa1−xN/p-GaN nanowire devices are highly robust and exhibit enhanced efficiencies for concentrated solar light illuminations as well as single nanowire Jsc values as high as 390 mA/cm2 under intense short-wavelength illumination. The ability to rationally tune the structure and composition of these core/shell III−nitride nanowires will make them a powerful platform for exploring nanoenabled PVs in the future.
Yajie Dong, Bozhi Tian, Thomas J. Kempa, Charles M. Lieber (2009). Coaxial Group III−Nitride Nanowire Photovoltaics. Nano Letters, 9(5), pp. 2183-2187, DOI: 10.1021/nl900858v.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/nl900858v
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access