RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Classical and Bayesian Inference in Neuroimaging: Theory

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2002

Classical and Bayesian Inference in Neuroimaging: Theory

0 Datasets

0 Files

English
2002
NeuroImage
Vol 16 (2)
DOI: 10.1006/nimg.2002.1090

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Karl Friston
W.D. Penny
Christophe Phillips
+3 more

Abstract

This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.

How to cite this publication

Karl Friston, W.D. Penny, Christophe Phillips, Stefan J. Kiebel, Geoffrey E. Hinton, John Ashburner (2002). Classical and Bayesian Inference in Neuroimaging: Theory. NeuroImage, 16(2), pp. 465-483, DOI: 10.1006/nimg.2002.1090.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2002

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

NeuroImage

DOI

10.1006/nimg.2002.1090

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access