0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe most important ocean energy sources are wind energy and water wave energy, both of which are significant to carbon neutrality. Due to uneven distribution and random movement, the conversion efficiency from the two energies into electrical energy is limited, so the coupling of them is necessary. However, the current energy harvesting technologies generally target one certain type, or are simple mechanical coupling. Here, we propose a composite water wave energy harvesting scheme with wind excitation based on triboelectric nanogenerators (TENGs). A rotation TENG driven by wind is introduced as a pump to inject charges into the main TENG. For the main TENG driven by water waves, a specially designed charge self-shuttling mode is applied (CSS-TENG). Under the pump excitation, the shuttling charge amount is increased by 11.8 times, and the peak power density reaches 33.0 W m−3, with an average power density of 2.4 W m−3. Furthermore, the CSS-TENG is expanded into an array by parallel connection, and the practical applications are demonstrated. This work organically couples the wind and water wave energy in the ocean scene, through the charge pumping and self-shuttling mode, providing a new pathway for the synergistic development of clean and renewable energy sources.
Shijie Liu, Xi Liang, Jiajia Han, Yuxue Duan, Tao Jiang, Zhong Lin Wang (2024). Charge self-shuttling triboelectric nanogenerator based on wind-driven pump excitation for harvesting water wave energy. , 11(3), DOI: https://doi.org/10.1063/5.0225737.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1063/5.0225737
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access