0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMunicipal solid waste incineration (MSWI) bottom ash, due to its high mineral content, presents great potential as supplementary cementitious material (SCM). Weathering, also known as aging, is a treatment process commonly employed in waste management to minimize the risk of heavy metal leaching from MSWI bottom ash. Using weathered MSWI bottom ash to produce blended cement pastes is considered as a high-value-added and sustainable waste disposal solution. However, a critical challenge arises from the metallic aluminum (Al) in weathered MSWI bottom ash, which is known to induce detrimental effects such as volume expansion and strength loss of blended cement pastes. While most metallic Al in weathered MSWI bottom ash can be removed with eddy current separators in metal recovery plants, the residual metallic Al, owing to its small particle size, cannot be removed with the same technique. This study is dedicated to addressing this issue. An in-depth analysis was conducted on residual metallic Al embedded in weathered MSWI bottom ash particles, aiming to guide the removal of this metal. This analysis revealed that mechanical removal was the most suitable method for extracting metallic Al. The specific processes and mechanisms underlying this method were elucidated. After reducing metallic Al content in weathered MSWI bottom ash by 77 %, a significant improvement in the quality of blended cement pastes was observed. This work contributes to the broader adoption of mechanical treatments for removing residual metallic Al from weathered MSWI bottom ash and facilitates the application of treated ash as SCM.
Boyu Chen, Jiayi Chen, Fernando França de Mendonça Filho, Yubo Sun, Marc Brito van Zijl, Oğuzhan Çopuroğlu, Ye Guang (2024). Characterization and mechanical removal of metallic aluminum (Al) embedded in weathered municipal solid waste incineration (MSWI) bottom ash for application as supplementary cementitious material. , 176, DOI: https://doi.org/10.1016/j.wasman.2024.01.031.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.wasman.2024.01.031
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access