0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCerebellar computations are necessary for fine behavioural control and may rely on internal models for estimation of behaviourally relevant states. Here, we propose that the central cerebellar function is to estimate how states interact with each other, and to use these estimates to coordinates extra-cerebellar neuronal dynamics underpinning a range of interconnected behaviours. To support this claim, we describe a cerebellar model for state estimation that includes state interactions, and link this model with the neuronal architecture and dynamics observed empirically. This is formalised using the free energy principle, which provides a dual perspective on a system in terms of both the dynamics of its physical-in this case neuronal-states, and the inferential process they entail. As a demonstration of this proposal, we simulate cerebellar-dependent synchronisation of whisking and respiration, which are known to be tightly coupled in rodents, as well as limb and tail coordination during locomotion. In summary, we propose that the ubiquitous involvement of the cerebellum in behaviour arises from its central role in precisely coupling behavioural domains.
Ensor Rafael Palacios, Paul Chadderton, Karl Friston, Conor Houghton (2024). Cerebellar state estimation enables resilient coupling across behavioural domains. , 14(1), DOI: https://doi.org/10.1038/s41598-024-56811-x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s41598-024-56811-x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access