0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Global losses over the 20th century placed seagrass ecosystems among the most threatened ecosystems in the world, with eutrophication, and associated deterioration of the submarine light environment identified as the main driver. Growing appreciation of the ecological and societal benefits of healthy seagrass meadows has stimulated efforts to protect and restore them, largely focused on reducing nutrient input to coastal waters. Here we analyze a unique data set spanning 135 years on eelgrass ( Zostera marina), the dominant seagrass of the northern hemisphere. We show that meadows in the Western Baltic Sea exhibited major declines relative to historic (1890–1910) reference due to the wasting disease in the 1930s followed by eutrophication peaking in the 1980s, but have only shown modest improvement despite major eutrophication mitigation, halving nitrogen input since the 1980s. Across the past century, we identified generally shallower colonization depths of eelgrass for a given submarine light penetration and, hence, increased apparent light requirements. This suggests that eelgrass recovery is limited by additional stressors. Our study indicates that bottom trawling and intense recent warming (0.5°C per decade, 1985–2018), which impact on deeper and shallower meadows, respectively, suppress eelgrass from fully recovering from eutrophication. Warming is most severe in shallow turbid waters, while clear‐water areas offer eelgrass refugia from warming in deeper, cooler waters; but trawling can prevent eelgrass from reaching these refugia. Efforts to reduce nutrient input and thereby improve water clarity have been instrumental in avoiding a catastrophic loss of eelgrass ecosystems. However, local‐scale future management must, in addition, reduce bottom trawling to facilitate eelgrass reaching deeper, cooler refugia, and increase resilience toward realized and further warming. Warming needs to be limited by meeting global climate change mitigation goals.
Dorte Krause‐Jensen, Carlos M. Duarte, Kaj Sand‐Jensen, Jacob Carstensen (2020). Century‐long records reveal shifting challenges to seagrass recovery. , 27(3), DOI: https://doi.org/10.1111/gcb.15440.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/gcb.15440
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access