RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2007

Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator

0 Datasets

0 Files

en
2007
Vol 8 (1)
Vol. 8
DOI: 10.1021/nl0728470

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Jin Liu
Fei Peng
Jinhui Song
+4 more

Abstract

By assembling a ZnO nanowire (NW) array based nanogenerator (NG) that is transparent to UV light, we have investigated the performance of the NG by tuning its carrier density and the characteristics of the Schottky barrier at the interface between the metal electrode and the NW. The formation of a Schottky diode at the interface is a must for the effective operation of the NG. UV light not only increases the carrier density in ZnO but also reduces the barrier height. A reduced barrier height greatly weakens the function of the barrier for preserving the piezoelectric potential in the NW for an extended period of time, resulting in little output current. An increased carrier density speeds up the rate at which the piezoelectric charges are screened/neutralized, but a very low carrier density prevents the flow of current through the NWs. Therefore, there is an optimum conductance of the NW for maximizing the output of the NG. Our study provides solid evidence to further prove the mechanism proposed for the piezoelectric NG and piezotronics. The output current density of the NG has been improved to 8.3 μA/cm2.

How to cite this publication

Jin Liu, Fei Peng, Jinhui Song, Xudong Wang, Changshi Lao, Rao Tummala, Zhong Lin Wang (2007). Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator. , 8(1), DOI: https://doi.org/10.1021/nl0728470.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2007

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/nl0728470

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access