0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA co-coagulation process was utilized to prepare carboxylated butadiene–styrene rubber (xSBR)/halloysite nanotube (HNT) nanocomposites. The interfacial interaction, morphology, and the mechanical performance of the nanocomposites were investigated. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) results indicate the formation of hydrogen bonding between xSBR and HNTs. Lower content of HNTs tends to delay the vulcanization of xSBR/HNT compounds, while higher HNT loading promotes the vulcanization. It is shown that HNTs are dispersed individually and uniformly in the matrix with strong interfacial bonding. The mechanical properties, especially the modulus and hardness, are significantly increased by the inclusion of HNTs. The significant reinforcing effects of HNTs are correlated to the co-coagulation process and strong interfacial interactions via hydrogen bonding.
Mingliang Du, Guo Baochun, Yanda Lei, Mingxian Liu, Demin Jia (2008). Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer, 49(22), pp. 4871-4876, DOI: 10.1016/j.polymer.2008.08.042.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Polymer
DOI
10.1016/j.polymer.2008.08.042
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access