0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIt is still a huge challenge to implement multiple energy dissipation mechanisms into polymers toward strong yet tough elastomers. Here, we describe a biomimetic design for diene-rubber by incorporating carbon nanodots (CDs) into a chemically cross-linked network. The high-functionality CDs serve as both physical and chemical cross-linkers, which give rise to a covalent network that interlinks multiple chains with nonuniform lengths, and interfacial hydrogen bonds. Upon stretching, the hydrogen bonds preferentially detach, leading to the orientation of short covalent bridging, which contributes the forward onset of strain-induced crystallization. The subsequent rupture of short covalent bridging, together with the successive detachment of hydrogen bonds result in further orientation of hidden length, which enhances the crystallinity. Consequently, the samples exhibit an integrated improvement of strength and toughness, and intact stretchability. We envisage that this strategy may provide a new avenue to implement biomimetic design for high-performance elastomers through multiple energy dissipation mechanisms.
Siwu Wu, Min Qiu, Zhenghai Tang, Jie Liu, Guo Baochun (2017). Carbon Nanodots as High-Functionality Cross-Linkers for Bioinspired Engineering of Multiple Sacrificial Units toward Strong yet Tough Elastomers. Macromolecules, 50(8), pp. 3244-3253, DOI: 10.1021/acs.macromol.7b00483.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Macromolecules
DOI
10.1021/acs.macromol.7b00483
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access