RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
1998

Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes

0 Datasets

0 Files

English
1998
Inorganic Chemistry
Vol 37 (26)
DOI: 10.1021/ic980948i

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Frank Neese
Edward I. Solomon

Abstract

Equations are derived and discussed that allow the computation of zero-field splitting (ZFS) tensors in transition metal complexes for any value of the ground-state total spin S. An effective Hamiltonian technique is used and the calculation is carried to second order for orbitally nondegenerate ground states. The theory includes contributions from excited states of spin S and S +/- 1. This makes the theory more general than earlier treatments. Explicit equations are derived for the case where all states are well described by single-determinantal wave functions, for example restricted open shell Hartree-Fock (HF) and spin-polarized HF or density functional (DFT) calculation schemes. Matrix elements are evaluated for many electron wave functions that result from a molecular orbital (MO) treatment including configuration interaction (CI). A computational implementation in terms of bonded functions is outlined. The problem of ZFS in high-spin ferric complexes is treated at some length, and contributions due to low-symmetry distortions, anisotropic covalency, charge-transfer states, and ligand spin-orbit coupling are discussed. ROHF-INDO/S-CI results are presented for FeCl(4)(-) and used to evaluate the importance of the various terms. Finally, contributions to the experimentally observed reduction of the metal spin-orbit coupling constants (the relativistic nephelauxetic effect) are discussed. B3LYP and Hartree-Fock calculations for FeCl(4)(-) are used to characterize the change of the iron 3d radial function upon complex formation. It is found that the iron 3d radial distribution function is significantly expanded and that the expansion is anisotropic. This is interpreted as a combination of reduction in effective charge on the metal 3d electrons (central field covalence) together with expansive promotion effects that are a necessary consequence of chemical bond formation. The <r(-)(3)>(3d) values that are important in the interpretation of magnetic data are up to 15% reduced from their free-ion value before any metal-ligand orbital mixing (symmetry-restricted covalency) is taken into account. Thus the use of free-ion values for spin-orbit coupling and related constants in the analysis of experimental data leads to values for MO coefficients that overestimate the metal-ligand covalency.

How to cite this publication

Frank Neese, Edward I. Solomon (1998). Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes. Inorganic Chemistry, 37(26), pp. 6568-6582, DOI: 10.1021/ic980948i.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

1998

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Inorganic Chemistry

DOI

10.1021/ic980948i

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access