0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVibrations in living environments are generally distributed over a wide frequency spectrum and exhibit multiple motion directions over time, which renders most of the current vibration energy harvesters unpractical for their harvesting purposes. Here, a 3D triboelectric nanogenerator (3D‐TENG) is designed based on the coupling of the triboelectrification effect and the electrostatic induction effect. The 3D‐TENG operates in a hybridization mode of conjuntioning the vertical contact‐separation mode and the in‐plane sliding mode. The innovative design facilitates harvesting random vibrational energy in multiple directions over a wide bandwidth. An analytical model is established to investigate the mechano‐triboelectric transduction of 3D‐TENG and the results agree well with experimental data. The 3D‐TENG is able to harvest ambient vibrations with an extremely wide working bandwidth. Maximum power densities of 1.35 W m ‐2 and 1.45 W m ‐2 are achieved under out‐of‐plane and in‐plane excitation, respectively. The 3D TENG is designed for harvesting ambient vibration energy, especially at low frequencies, under a range of conditions in daily life and has potential applications in environmental/infrastructure monitoring and charging portable electronics.
Jin Yang, Jun Chen, Ya Yang, Hulin Zhang, Weiqing Yang, Peng Bai, Yuanjie Su, Zhong Lin Wang (2013). Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator. , 4(6), DOI: https://doi.org/10.1002/aenm.201301322.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/aenm.201301322
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access