Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM

0 Datasets

0 Files

English
2023
Atmosphere
Vol 14 (7)
DOI: 10.3390/atmos14071082

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Su-kit Tang
Su-kit Tang

Institution not specified

Verified
Vai-Kei Ian
Rita Tse
Su-kit Tang
+1 more

Abstract

Accurate storm surge forecasting is vital for saving lives and avoiding economic and infrastructural damage. Failure to accurately predict storm surge can have catastrophic repercussions. Advances in machine learning models show the ability to improve accuracy of storm surge prediction by leveraging vast amounts of historical and realtime data such as weather and tide patterns. This paper proposes a bidirectional attention-based LSTM storm surge architecture (BALSSA) to improve prediction accuracy. Training and evaluation utilized extensive meteorological and tide level data from 77 typhoon incidents in Hong Kong and Macao between 2017 and 2022. The proposed methodology is able to model complex non-linearities between large amounts of data from different sources and identify complex relationships between variables that are typically not captured by traditional physical methods. BALSSA effectively resolves the problem of long-term dependencies in storm surge prediction by the incorporation of an attention mechanism. It enables selective emphasis on significant features and boosts the prediction accuracy. Evaluation has been conducted using real-world datasets from Macao to validate our storm surge prediction model. Results show that accuracy and robustness of predictions were significantly improved by the incorporation of attention mechanisms in our models. BALSSA captures temporal dynamics effectively, providing highly accurate storm surge forecasts (MAE: 0.0126, RMSE: 0.0003) up to 72 h in advance. These findings have practical significance for disaster risk reduction strategies, saving lives through timely evacuation and early warnings. Experiments comparing BALSSA variations with other machine learning algorithms consistently validate BALSSA’s superior predictive performance. It offers an additional risk management tool for civil-protection agencies and governments, as well as an ideal solution for enhancing storm surge prediction accuracy, benefiting coastal communities.

How to cite this publication

Vai-Kei Ian, Rita Tse, Su-kit Tang, Giovanni Pau (2023). Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM. Atmosphere, 14(7), pp. 1082-1082, DOI: 10.3390/atmos14071082.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Atmosphere

DOI

10.3390/atmos14071082

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access