0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAccurate storm surge forecasting is vital for saving lives and avoiding economic and infrastructural damage. Failure to accurately predict storm surge can have catastrophic repercussions. Advances in machine learning models show the ability to improve accuracy of storm surge prediction by leveraging vast amounts of historical and realtime data such as weather and tide patterns. This paper proposes a bidirectional attention-based LSTM storm surge architecture (BALSSA) to improve prediction accuracy. Training and evaluation utilized extensive meteorological and tide level data from 77 typhoon incidents in Hong Kong and Macao between 2017 and 2022. The proposed methodology is able to model complex non-linearities between large amounts of data from different sources and identify complex relationships between variables that are typically not captured by traditional physical methods. BALSSA effectively resolves the problem of long-term dependencies in storm surge prediction by the incorporation of an attention mechanism. It enables selective emphasis on significant features and boosts the prediction accuracy. Evaluation has been conducted using real-world datasets from Macao to validate our storm surge prediction model. Results show that accuracy and robustness of predictions were significantly improved by the incorporation of attention mechanisms in our models. BALSSA captures temporal dynamics effectively, providing highly accurate storm surge forecasts (MAE: 0.0126, RMSE: 0.0003) up to 72 h in advance. These findings have practical significance for disaster risk reduction strategies, saving lives through timely evacuation and early warnings. Experiments comparing BALSSA variations with other machine learning algorithms consistently validate BALSSA’s superior predictive performance. It offers an additional risk management tool for civil-protection agencies and governments, as well as an ideal solution for enhancing storm surge prediction accuracy, benefiting coastal communities.
Vai-Kei Ian, Rita Tse, Su-kit Tang, Giovanni Pau (2023). Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM. Atmosphere, 14(7), pp. 1082-1082, DOI: 10.3390/atmos14071082.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Atmosphere
DOI
10.3390/atmos14071082
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access