RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Breaking Mass Transport Limit for Hydrogen Evolution‐Inhibited and Dendrite‐Free Aqueous Zn Batteries

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Breaking Mass Transport Limit for Hydrogen Evolution‐Inhibited and Dendrite‐Free Aqueous Zn Batteries

0 Datasets

0 Files

en
2024
DOI: 10.1002/adma.202410244

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Jingmin Zhang
Leo N.Y. Cao
Rongrong Li
+5 more

Abstract

Abstract It is commonly accepted that batteries perform better at low current densities below the mass‐transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut‐off capacities exceeding the mass‐transport limit by using pulsed‐current protocols. These protocols achieve cumulative plating/stripping capacities of 11.0 Ah cm −2 and 3.8 Ah cm −2 at record‐high current densities of 80 and 160 mA cm −2 , respectively. The study identifies and understands the promoted (002)‐textured Zn growth and suppressed hydrogen evolution based on the thermodynamics and kinetics of competing reactions. Furthermore, the over‐limiting pulsed‐current protocol enables long‐life Zn batteries with high mass loading (29 mg cathode cm −2 ) and high areal capacity (7.9 mAh cm −2 ), outperforming cells using constant‐current protocols at equivalent energy and time costs. The work provides a comprehensive understanding of the current‐capacity‐performance relationship in Zn plating/stripping and offers an effective strategy for dendrite‐free metal batteries that meet practical requirements for high capacity and high current rates.

How to cite this publication

Jingmin Zhang, Leo N.Y. Cao, Rongrong Li, Jun Yang, Longwei Li, Kai Yang, Zhong Lin Wang, Xiong Pu (2024). Breaking Mass Transport Limit for Hydrogen Evolution‐Inhibited and Dendrite‐Free Aqueous Zn Batteries. , DOI: https://doi.org/10.1002/adma.202410244.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.202410244

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access