0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFrom Steps to Clusters When a flat surface of a single crystal is formed by cutting or cleavage, the atoms may move little from their bulk positions, or the surface may reconstruct as the atoms move to more energetically favorable positions. The adsorption of molecules can also change the energetic landscape and cause reconstruction. Tao et al. (p. 850 ; see the Perspective by Altman ) examined “stepped” platinum surfaces, the (557) and (332) surfaces in which flat terraces are connected by atomic steps. Scanning tunneling microscopy and x-ray photoelectron spectroscopy revealed a reversible breakup into nanometer-scale clusters when CO surface coverages were very high. Density functional theory calculations suggest that this new morphology increases the number of edge sites for adsorption and relieves unfavorable CO-CO repulsions.
Tao Feng, S. Dağ, Lin‐Wang Wang, Zhi Liu, Derek R. Butcher, Hendrik Bluhm, Miquel Salmerón, Gabor Somorjai (2010). Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage. , 327(5967), DOI: https://doi.org/10.1126/science.1182122.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1126/science.1182122
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access