0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Neuromorphic devices capable of emulating biological synaptic behaviors are crucial for implementing brain‐like information processing and computing. Emerging 2D ferroelectric neuromorphic devices provide an effective means of updating synaptic weight aside from conventional electrical/optical modulations. Here, by further synergizing with an energy‐efficient synaptic plasticity strategy, a multimodal mechano‐photonic synaptic memory device based on 2D asymmetric ferroelectric heterostructure is presented, which can be modulated by external mechanical behavior and light illumination. By integrating the asymmetric ferroelectric heterostructured field‐effect transistor and a triboelectric nanogenerator, the mechanical displacement‐derived triboelectric potential is ready for gating, programming, and plasticizing the synaptic device, resulting in superior electrical properties of high on/off ratios (> 10 7 ), large storage windows (equivalent to ≈95 V), excellent charge retention capability (> 10 4 s), good endurance (> 10 3 cycles), and primary synaptic behaviors. Besides, optical illumination can effectively synergize with mechanoplasticity to implement multimodal spatiotemporally correlated dynamic logic. The demonstrated multimodal memory synapse provides a facile and promising strategy for multifunctional sensory memory, interactive neuromorphic devices, and future brain‐like electronics embodying artificial intelligence.
Jie Gong, Yichen Wei, Yifei Wang, Zhenyu Feng, Jinran Yu, Liuqi Cheng, Mingxia Chen, Lin Li, Zhong Lin Wang, Qijun Sun (2024). Brain‐inspired Multimodal Synaptic Memory via Mechano‐photonic Plasticized Asymmetric Ferroelectric Heterostructure. , DOI: https://doi.org/10.1002/adfm.202408435.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.202408435
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access