0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSimple methods of preparing boron nitride nanotubes and nanowires have been investigated. The methods involve heating boric acid with activated carbon, multi-walled carbon nanotubes, catalytic iron particles or a mixture of activated carbon and iron particles, in the presence of NH3. While with activated carbon, boron nitride nanowires constitute the primary product, high yields of clean boron nitride nanotubes are obtained with multi-walled carbon nanotubes. Aligned boron nitride nanotubes are produced when aligned multi-walled carbon nanotubes are employed as the starting material suggesting the templating role of the nanotubes. Boron nitride nanotubes with different structures have been obtained by reacting boric acid with NH3 in the presence of a mixture of activated carbon and Fe particles.
Francis Leonard Deepak, C. P. Vinod, Kingsuk Mukhopadhyay, A. Govindaraj, Cnr Rao (2002). Boron nitride nanotubes and nanowires. Chemical Physics Letters, 353(5-6), pp. 345-352, DOI: 10.1016/s0009-2614(02)00007-6.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Chemical Physics Letters
DOI
10.1016/s0009-2614(02)00007-6
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access