0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble‐metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.
Hansong Yu, Annemieke Janssen, Veronica Pawlik, Younan Xia (2024). Bipyramidal Nanocrystals of Noble Metals: From Synthesis to Applications. , DOI: https://doi.org/10.1002/chem.202402478.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/chem.202402478
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access