0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMemristors have emerged as a promising candidate to mimic the human behavior and thus unlocking the potential for bio‐inspired computing advancement. However, these devices operate at a voltages which are still far from the energy‐efficient biological counterpart, which uses an action potential of 50–120 mV to process the information. Here, a diffusive memristor is reported from synthetic WSe 2 fabricated in Ag/WSe 2 /Au vertical device geometry. The devices operate at bio‐voltages of 40–80 mV with I on / I off ratio of 10 6 and steep switching turn ON and OFF slopes of 0.77 and 0.88 mV per decade, respectively. The power consumption in standby mode and power per set transition are found to be 10 fW and 64 pW, respectively. Further, the diffusive memristors are utilized to emulate the nociceptor, a special receptor for sensory neurons that selectively responds to noxious stimuli. Nociceptor in turn imparts a warning signal to the central nervous system which then triggers the motor response to take precautionary actions to prevent the body from injury. The key features of a nociceptor including “threshold”, “relaxation”, “no‐adaptation” and “sensitization” are demonstrated using artificial nociceptors. These illustrations imply the feasibility of developing low‐power diffusive memristors for bio‐inspired computing, humanoid robots, and electronic skins.
Renu Yadav, Ramesh Rajarapu, Saroj Poudyal, Bubunu Biswal, Prahalad Kanti Barman, Konstantin ‘kostya’ Novoselov, Abhishek Misra (2024). Bio‐Voltage Diffusive Memristor from CVD Grown WSe<sub>2</sub> as Artificial Nociceptor. Advanced Materials Technologies, DOI: 10.1002/admt.202401048.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Advanced Materials Technologies
DOI
10.1002/admt.202401048
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access