0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessObjectives The aim of the present study was to investigate the relationship between the integration process and luminal enlargement with the support of light intensity (LI) analysis on optical coherence tomography (OCT), echogenicity analysis on intravascular ultrasound, and histology up to 4 years in a porcine model. Background In pre-clinical and clinical studies, late luminal enlargement has been demonstrated at long-term follow-up after everolimus-eluting poly-l-lactic acid coronary scaffold implantation. However, the time relationship and the mechanistic association with the integration process are still unclear. Methods Seventy-three nonatherosclerotic swine that received 112 Absorb scaffolds were evaluated in vivo by OCT, intravascular ultrasound, and post-mortem histomorphometry at 3, 6, 12, 18, 24, 30, 36, 42, and 48 months. Results The normalized LI, which is the signal densitometry on OCT of a polymeric strut core normalized by the vicinal neointima, was able to differentiate the degree of connective tissue infiltration inside the strut cores. Luminal enlargement was a biphasic process at 6 to 18 months and at 30 to 42 months. The latter phase occurred with vessel wall thinning and coincided with the advance integration process demonstrated by the steep change in normalized LI (0.26 [interquartile range (IQR): 0.20 to 0.32] at 30 months versus 0.68 [IQR: 0.58 to 0.83] at 42 months, p < 0.001). Conclusions In this pre-clinical model, late luminal enlargement relates to strut integration into the arterial wall. Quantitative LI analysis on OCT could be used as a surrogate method for monitoring the integration process of poly-l-lactic acid scaffolds, which could provide insight and understanding on the imaging-related characteristics of the bioresorption process of polylactide scaffolds in human.
Shimpei Nakatani, Yuki Ishibashi, Yohei Sotomi, Laura Perkins, Jeroen Eggermont, Maik J. Grundeken, Jouke Dijkstra, Richard Rapoza, Renu Virmani, Patrick W. Serruys, Yoshinobu Onuma (2016). Bioresorption and Vessel Wall Integration of a Fully Bioresorbable Polymeric Everolimus-Eluting Scaffold. КАРДИОЛОГИЯ УЗБЕКИСТАНА, 9(8), pp. 838-851, DOI: 10.1016/j.jcin.2016.01.030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
КАРДИОЛОГИЯ УЗБЕКИСТАНА
DOI
10.1016/j.jcin.2016.01.030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access