Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability

0 Datasets

0 Files

English
2020
Materials & Design
Vol 192
DOI: 10.1016/j.matdes.2020.108756

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guo Baochun
Guo Baochun

South China University of Technology

Verified
Siwu Wu
Shifeng Fang
Zhenghai Tang
+2 more

Abstract

Most elastomeric vitrimers suffer from mechanical weakness in practical applications. Inspired by the development of strong and tough biomaterials relying on sacrificial bond-detachment mechanisms, herein we describe the biomimetic design of elastomeric vitrimers with mechanical robustness, preservable malleability, and recyclability by engineering sacrificial metal-ligand coordination bonds into exchangeable networks. In particular, we use a commercially available metal complex, aluminum acetylacetonate (Al(acac)3), to catalyze cross-linking based on the silylation reaction between hydroxylated natural rubber and hydrosilanes, thus introducing dynamic silyl ether-based architectures into the rubber matrix. At the same time, the Al3+ ions can interact with the free oxygen-containing moieties on the rubber skeleton, enabling labile Al3+O coordination bonds in the covalent framework to substantially dissipate mechanical energy through reversible bond detachment/reattachment upon deformation. As the organic acetylacetonate ligands of Al(acac)3 can facilitate the dispersion of Al3+ ions in the matrix, incorporating a small amount of organometallic complex (0.68 wt% of elastomer matrix) achieves an unparalleled improvement of the strength, modulus, and toughness of the resulting vitrimers. Moreover, due to their temperature-dependent nature, the Al3+O coordination bonds will partially dissociate at elevated temperatures, which only slightly compromises the topological rearrangements of the silyl ether-based network, but barely affects the reprocessability.

How to cite this publication

Siwu Wu, Shifeng Fang, Zhenghai Tang, Fang Liu, Guo Baochun (2020). Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability. Materials & Design, 192, pp. 108756-108756, DOI: 10.1016/j.matdes.2020.108756.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Materials & Design

DOI

10.1016/j.matdes.2020.108756

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access