0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMany advances have been made in the field of computer vision. Several recent research trends have focused on mimicking human vision by using a stereo vision system. In multi-camera systems, a calibration process is usually implemented to improve the results accuracy. However, these systems generate a large amount of data to be processed; therefore, a powerful computer is required and, in many cases, this cannot be done in real time. Neuromorphic Engineering attempts to create bio-inspired systems that mimic the information processing that takes place in the human brain. This information is encoded using pulses (or spikes) and the generated systems are much simpler (in computational operations and resources), which allows them to perform similar tasks with much lower power consumption, thus these processes can be developed over specialized hardware with real-time processing. In this work, a bio-inspired stereo-vision system is presented, where a calibration mechanism for this system is implemented and evaluated using several tests. The result is a novel calibration technique for a neuromorphic stereo vision system, implemented over specialized hardware (FPGA - Field-Programmable Gate Array), which allows obtaining reduced latencies on hardware implementation for stand-alone systems, and working in real time.
Manuel Jesus Dominguez Morales, Ángel Jiménez-Fernández, G. Jiménez, Cristina Conde, Enrique Cabello, Alejandro Linares-Barranco (2019). Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors. , 7, DOI: https://doi.org/10.1109/access.2019.2943160.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/access.2019.2943160
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access