Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors

0 Datasets

0 Files

en
2019
Vol 7
Vol. 7
DOI: 10.1109/access.2019.2943160

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Manuel Jesus Dominguez Morales
Manuel Jesus Dominguez Morales

Institution not specified

Verified
Manuel Jesus Dominguez Morales
Ángel Jiménez-Fernández
G. Jiménez
+3 more

Abstract

Many advances have been made in the field of computer vision. Several recent research trends have focused on mimicking human vision by using a stereo vision system. In multi-camera systems, a calibration process is usually implemented to improve the results accuracy. However, these systems generate a large amount of data to be processed; therefore, a powerful computer is required and, in many cases, this cannot be done in real time. Neuromorphic Engineering attempts to create bio-inspired systems that mimic the information processing that takes place in the human brain. This information is encoded using pulses (or spikes) and the generated systems are much simpler (in computational operations and resources), which allows them to perform similar tasks with much lower power consumption, thus these processes can be developed over specialized hardware with real-time processing. In this work, a bio-inspired stereo-vision system is presented, where a calibration mechanism for this system is implemented and evaluated using several tests. The result is a novel calibration technique for a neuromorphic stereo vision system, implemented over specialized hardware (FPGA - Field-Programmable Gate Array), which allows obtaining reduced latencies on hardware implementation for stand-alone systems, and working in real time.

How to cite this publication

Manuel Jesus Dominguez Morales, Ángel Jiménez-Fernández, G. Jiménez, Cristina Conde, Enrique Cabello, Alejandro Linares-Barranco (2019). Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors. , 7, DOI: https://doi.org/10.1109/access.2019.2943160.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/access.2019.2943160

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access