RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bio-Inspired Soft Actuator with Contact Feedback Based on Photothermal Effect and Triboelectric Nanogenerator

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Bio-Inspired Soft Actuator with Contact Feedback Based on Photothermal Effect and Triboelectric Nanogenerator

0 Datasets

0 Files

en
2022
DOI: 10.2139/ssrn.4071773

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Xu Jin
Yapeng Shi
Zhihao Yuan
+3 more

Abstract

The development of film soft actuators with contact feedback and outstanding environmental robustness is desirable. In this work, a film-based soft actuator laminated by polyethylene glycol terephthalate (PET), carbon black ink, and polydimethylsiloxane (PDMS) is proposed. Due to the enormous difference in thermal expansion coefficients between these materials, the actuator achieves a large bending deformation angle and a high response speed. Without the shape-memory materials, the actuator can return to its original shape under light-induced after being subjected to mechanical stress. Meanwhile, the actuator maintains its shape after being exposed to extreme temperatures of up to 200°C and immersion in a variety of solvents. Furthermore, based on the triboelectric effect, the actuator can generate remarkable real-time electrical signals when it mimics the tongue of frogs, bends deformation, and simulates mechanical grippers. This work demonstrates a simple method for building various intelligent and flexible electronic devices and provides promising applications for soft robots.

How to cite this publication

Xu Jin, Yapeng Shi, Zhihao Yuan, Xiaoqing Huo, Zhong Lin Wang, Zhiyi Wu (2022). Bio-Inspired Soft Actuator with Contact Feedback Based on Photothermal Effect and Triboelectric Nanogenerator. , DOI: https://doi.org/10.2139/ssrn.4071773.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.2139/ssrn.4071773

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access