0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elastomer actuators (DEAs) that can advance on flat rigid surfaces. The DEA, a kind of soft functional actuator, is designed and fabricated to mimic the axial elongation and differential friction of a single annelid body segment. Several (at least three) DEAs are connected together into a movable multi-segment robot. Bristles are attached at the bottom of some DEAs to achieve differential friction for imitating the setae of annelids. The annelid robot is controlled by periodic square waves, propagating from the posterior to the anterior, which imitate the peristaltic waves of annelids. Controlled by these waves, each DEA, one-by-one from tail to head, anchors to the ground by circumferential distention and pushes the front DEAs forward by axial elongation, enabling the robot to advance. Preliminary tests demonstrate that a 3-segment robot can reach an average speed of 5.3 mm s-1 (1.871 body lengths min-1) on flat rigid surfaces and can functionally mimic the locomotion of annelids. Compared to the existing robots that imitate terrestrial annelids our annelid robot shows advantages in terms of speed and bionics.
Liang Xu, Han-Qing Chen, Jiang Zou, Wanting Dong, Guoying Gu, Limin Zhu, Xiangyang Zhu (2017). Bio-inspired annelid robot: a dielectric elastomer actuated soft robot. Bioinspiration & Biomimetics, 12(2), pp. 025003-025003, DOI: 10.1088/1748-3190/aa50a5.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Bioinspiration & Biomimetics
DOI
10.1088/1748-3190/aa50a5
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access