0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessInteraction of two different samples of graphene with DNA nucleobases and nucleosides is investigated by isothermal titration calorimetry. The relative interaction energies of the nucleobases decrease in the order guanine (G)>adenine (A)>cytosine (C)>thymine (T) in aqueous solutions, although the positions of C and T seem to be interchangeable. The same trend is found with the nucleosides. Interaction energies of the A-T and G-C pairs are somewhere between those of the constituent bases. Theoretical calculations including van der Waals interaction and solvation energies give the trend G>A approximately T>C. The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nanotubes.
Neenu Varghese, Umesha Mogera, A. Govindaraj, Anindya Das, Prabal K. Maiti, Anil K. Sood, Cnr Rao (2008). Binding of DNA Nucleobases and Nucleosides with Graphene. ChemPhysChem, 10(1), pp. 206-210, DOI: 10.1002/cphc.200800459.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
ChemPhysChem
DOI
10.1002/cphc.200800459
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access