0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCardiovascular disease (CVD) remains the leading cause of death worldwide. Patients often fail to recognize the early signs of CVDs, which display irregularities in cardiac contractility and may ultimately lead to heart failure. Therefore, continuously monitoring the abnormal changes in cardiac contractility may represent a novel approach to long-term CVD surveillance. Here, a zero-power consumption and implantable bias-free cardiac monitoring capsule (BCMC) is introduced based on the triboelectric effect for cardiac contractility monitoring in situ. The output performance of BCMC is improved over 10 times with nanoparticle self-adsorption method. This device can be implanted into the right ventricle of swine using catheter intervention to detect the change of cardiac contractility and the corresponding CVDs. The physiological signals can be wirelessly transmitted to a mobile terminal for analysis through the acquisition and transmission module. This work contributes to a new option for precise monitoring and early diagnosis of CVDs.
Xuecheng Qu, Sijing Cheng, Ying Liu, Yiran Hu, Yizhu Shan, Ruizeng Luo, Sixian Weng, Hui Li, Niu Hong-xia, Min Gu, Yubo Fan, Bojing Shi, Zhuo Liu, Wei Hua, Zhou Li, Zhong Lin Wang (2024). Bias‐Free Cardiac Monitoring Capsule. , 36(33), DOI: https://doi.org/10.1002/adma.202402457.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
16
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.202402457
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access