0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMany online platforms incorporate engagement signals, such as likes, into their interface design to boost engagement. However, these signals can unintentionally elevate content that may not support normatively desirable behavior, especially when toxic content correlates strongly with popularity indicators. In this study, we propose structured prosocial feedback as a complementary signal, which highlights content quality based on normative criteria. We design and implement an LLM-based feedback system, which evaluates user comments based on principles from positive psychology, such as individual well-being. A pre-registered user study then examines how existing peer-based (popularity) and the new expert-based feedback interact to shape users' reposting behavior in a social media setting. Results show that peer feedback increases conformity to popularity cues, while expert feedback shifts choices toward normatively higher-quality content. This illustrates the added value of normative cues and underscores the potential benefits of incorporating such signals into platform feedback systems to foster healthier online environments.
Yuchen Wu, Mintao Zhao, John F Canny (2025). Beyond Likes: How Normative Feedback Complements Engagement Signals on Social Media. , DOI: https://doi.org/10.48550/arxiv.2505.09583.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2025
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2505.09583
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access