Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Benchmark Phaseless Auxiliary-Field Quantum Monte Carlo Method for Small Molecules

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2023

Benchmark Phaseless Auxiliary-Field Quantum Monte Carlo Method for Small Molecules

0 Datasets

0 Files

English
2023
arXiv (Cornell University)
DOI: 10.48550/arxiv.2303.04256

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Kresse Georg
Kresse Georg

University of Vienna

Verified
Zoran Sukurma
Martin Schlipf
Moritz Humer
+2 more

Abstract

We report a scalable Fortran implementation of the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) and demonstrate its excellent performance and beneficial scaling with respect to system size. Furthermore, we investigate modifications of the phaseless approximation that can help to reduce the overcorrelation problems common to the ph-AFQMC. We apply the method to the 26 molecules in the HEAT set, the benzene molecule, and water clusters. We observe a mean absolute deviation of the total energy of 1.15 kcal/mol for the molecules in the HEAT set; close to chemical accuracy. For the benzene molecule, the modified algorithm despite using a single-Slater-determinant trial wavefunction yields the same accuracy as the original phaseless scheme with 400 Slater determinants. Despite these improvements, we find systematic errors for the CN, CO$_2$, and O$_2$ molecules that need to be addressed with more accurate trial wavefunctions. For water clusters, we find that the ph-AFQMC yields excellent binding energies that differ from CCSD(T) by typically less than 0.5 kcal/mol.

How to cite this publication

Zoran Sukurma, Martin Schlipf, Moritz Humer, Amir Taheridehkordi, Kresse Georg (2023). Benchmark Phaseless Auxiliary-Field Quantum Monte Carlo Method for Small Molecules. arXiv (Cornell University), DOI: 10.48550/arxiv.2303.04256.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

DOI

10.48550/arxiv.2303.04256

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access