0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFiber-reinforced polymer (FRP) composites have become widely accepted in the strengthening or seismic retrofitting of reinforced concrete (RC) columns in practice. FRP-confined rectangular concrete columns under concentric axial compression have been extensively studied, leading to many stress-strain models (i.e., concentric-loading stress-strain models). Although RC columns in practical structures are commonly subjected to combined axial compression and bending (i.e., eccentric compression), existing research on eccentrically-loaded FRP-confined rectangular RC columns has been much more limited. More specifically, the limited research available has generally been concerned with small-scale RC columns, and the applicability of existing concentric-loading stress-strain models for FRP-confined concrete in the analysis of large-scale eccentrically-loaded rectangular RC columns has not been properly clarified. This paper presents the results of an experimental study including eight large-scale FRP-confined rectangular RC columns tested under eccentric compression. The following key test variables were carefully examined in the experimental program: the load eccentricity, the direction of bending, and the FRP jacket thickness. A theoretical column model is then presented for predicting the responses of the test columns. It is shown that the direct use of a concentric-loading stress-strain model for FRP-confined concrete in the column model leads to significant errors in predicting the ultimate deformation of the test columns.
Guan Lin, Jun‐Jie Zeng, Jin-guang Teng, Lijuan Li (2020). Behavior of large-scale FRP-confined rectangular RC columns under eccentric compression. Engineering Structures, 216, pp. 110759-110759, DOI: 10.1016/j.engstruct.2020.110759.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Engineering Structures
DOI
10.1016/j.engstruct.2020.110759
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access