Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Axial compression behavior of pultruded GFRP channel sections

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Axial compression behavior of pultruded GFRP channel sections

0 Datasets

0 Files

English
2022
Composite Structures
Vol 289
DOI: 10.1016/j.compstruct.2022.115438

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peng Feng
Peng Feng

Tsinghua University

Verified
Chao Wu
Jie Tian
Yue Ding
+1 more

Abstract

Pultruded glass fiber reinforced polymer (GFRP) sections are increasingly used as load bearing elements in civil construction. Their low elastic modulus and thin-walled nature make these sections prone to buckling phenomena when loaded in compression. This paper presents a study on the axial compression behavior of the pultruded GFRP channel sections. Two variables were considered including column slenderness ratio and wall width-to-thickness ratio. Therefore, four channel sections with different dimensions were selected. Seven column lengths ranging from 100 mm to 1400 mm were used for each channel section under axial compression. Three failure modes were observed including section crushing, local buckling and global buckling which were highly related to the column slenderness. Load-displacement curves and compression capacities were reported and compared. Finally, existing analytical design equations in the literature were validated using experimental results. Recommendations on compression design of pultruded GFRP channel sections were made based on the results in the current study.

How to cite this publication

Chao Wu, Jie Tian, Yue Ding, Peng Feng (2022). Axial compression behavior of pultruded GFRP channel sections. Composite Structures, 289, pp. 115438-115438, DOI: 10.1016/j.compstruct.2022.115438.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Composite Structures

DOI

10.1016/j.compstruct.2022.115438

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access