Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Automatic Tracking Based on Weighted Fusion Back Propagation in UWB for IoT Devices

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Automatic Tracking Based on Weighted Fusion Back Propagation in UWB for IoT Devices

0 Datasets

0 Files

English
2024
Sensors
Vol 24 (4)
DOI: 10.3390/s24041257

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Silvia Mirri
Silvia Mirri

Institution not specified

Verified
Boliang Zhang
Lu Shen
Jiahua Yao
+3 more

Abstract

The global population is progressively entering an aging phase, with population aging likely to emerge as one of the most-significant social trends of the 21st Century, impacting nearly all societal domains. Addressing the challenge of assisting vulnerable groups such as the elderly and disabled in carrying or transporting objects has become a critical issue in this field. We developed a mobile Internet of Things (IoT) device leveraging Ultra-Wideband (UWB) technology in this context. This research directly benefits vulnerable groups, including the elderly, disabled individuals, pregnant women, and children. Additionally, it provides valuable references for decision-makers, engineers, and researchers to address real-world challenges. The focus of this research is on implementing UWB technology for precise mobile IoT device localization and following, while integrating an autonomous following system, a robotic arm system, an ultrasonic obstacle-avoidance system, and an automatic leveling control system into a comprehensive experimental platform. To counteract the potential UWB signal fluctuations and high noise interference in complex environments, we propose a hybrid filtering-weighted fusion back propagation (HFWF-BP) neural network localization algorithm. This algorithm combines the characteristics of Gaussian, median, and mean filtering, utilizing a weighted fusion back propagation (WF-BP) neural network, and, ultimately, employs the Chan algorithm to achieve optimal estimation values. Through deployment and experimentation on the device, the proposed algorithm’s data preprocessing effectively eliminates errors under multi-factor interference, significantly enhancing the precision and anti-interference capabilities of the localization and following processes.

How to cite this publication

Boliang Zhang, Lu Shen, Jiahua Yao, Tenglong Wang, Su-Kit Tang, Silvia Mirri (2024). Automatic Tracking Based on Weighted Fusion Back Propagation in UWB for IoT Devices. Sensors, 24(4), pp. 1257-1257, DOI: 10.3390/s24041257.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Sensors

DOI

10.3390/s24041257

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access