0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPredominantly covered by a single type of {100} facets, Cu nanocubes are attractive catalytic material toward reactions such as electrochemical reduction of CO2. Here we report a seed-mediated approach to the facile synthesis of Au@Cu core–shell nanocubes with hexadecylamine and Cl– serving as capping agents toward the {100} facets of Cu and glucose as a reducing agent. The large (12%) lattice mismatch between Cu and Au led to the localized epitaxial growth of Cu shells on the Au seeds and the formation of nanocubes with randomly distributed Au cores. Compared to the same synthesis in the absence of Au seeds, the reduction of Cu(II) ions was greatly accelerated in the presence of Au seeds because of the autocatalytic surface reduction. It was also found that the structure and morphology of the products were highly dependent on the concentration of Cu(II) precursor in the reaction solution. Nanoplates rather than nanocubes were obtained when the concentration of Cu(II) precursor was reduced down to a certain level. By variation of the reaction time and/or the amount of Au seeds, the size of the Au@Cu nanocubes could be tuned in a range of 20–30 nm. The as-synthesized core–shell nanocubes exhibited a strong localized surface plasmon resonance peak at 581 nm, and the resonance was dominated by absorption rather than scattering. It is expected that the Au@Cu nanocubes with uniform and controllable sizes will find use in a variety of applications such as plasmonics and catalysis.
Zhiheng Lyu, Minghao Xie, Edgar Aldama, Ming Zhao, Jichuan Qiu, Shan Zhou, Younan Xia (2019). Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. , 2(3), DOI: https://doi.org/10.1021/acsanm.9b00016.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsanm.9b00016
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access