Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Attenuation of pipeline filling over-pressures through trapped air

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Attenuation of pipeline filling over-pressures through trapped air

0 Datasets

0 Files

English
2024
Urban Water Journal
Vol 21 (6)
DOI: 10.1080/1573062x.2024.2346727

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Oscar Coronado-hernández
Oscar Coronado-hernández

Institution not specified

Verified
Duban A. Paternina-Verona
Oscar Coronado-hernández
Héctor Espinoza
+4 more

Abstract

Entrapped air pockets in water pipelines play a significant role in influencing transient over-pressures during filling procedures. Several research is focused on highlighting the attenuation of pressure peaks in pipes with single air pockets. This research studies the air-water interaction during rapid water filling processes in an irregular pipeline and air pockets in different branches, and how the trapped air can attenuate the over-pressure peaks. A three-dimensional computational fluid dynamics (CFD) model was developed, and numerical results of the model were validated through experimental measurements. For a given initial air pocket condition upstream of the high point, the maximum air pocket over-pressure was 11% to 32% lower when the descending pipe segment initially contains air compared to when it contains water. In sum, it was found that entrapped air pockets at high points of water pipelines can help mitigate transient over-pressures considering specific initial hydraulic conditions prior to filling operations.

How to cite this publication

Duban A. Paternina-Verona, Oscar Coronado-hernández, Héctor Espinoza, Alfonso Arrieta-Pastrana, Elias Tasca, Vicente S. Fuertes-Miquel, Helena M. Ramos (2024). Attenuation of pipeline filling over-pressures through trapped air. Urban Water Journal, 21(6), pp. 698-710, DOI: 10.1080/1573062x.2024.2346727.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Urban Water Journal

DOI

10.1080/1573062x.2024.2346727

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access