0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground: Amyloid plaques composed of the fibrillar form of the amyloid-β protein (Aβ) are the defining neuropathological feature of Alzheimer's disease (AD). A detailed understanding of the time course of amyloid formation could define steps in disease progression and provide targets for therapeutic intervention. Amyloid fibrils, indistinguishable from those derived from an AD brain, can be produced in vitro using a seeded polymerization mechanism. In its simplest form, this mechanism involves a cooperative transition from monomeric Aβ to the amyloid fibril without the buildup of intermediates. Recently, however, a transient species, the Aβ amyloid protofibril, has been identified. Here, we report studies of Aβ amyloid protofibril and its seeded transition into amyloid fibrils using atomic force microscopy. Results: Seeding of the protofibril-to-fibril transition was observed. Preformed fibrils, but not protofibrils, effectively seeded this transition. The assembly state of Aβ influenced the rate of seeded growth, indicating that protofibrils are fibril assembly precursors. The handedness of the helical surface morphology of fibrils depended on the chirality of Aβ. Finally, branched and partially wound fibrils were observed. Conclusions: The temporal evolution of morphologies suggests that the protofibril-to-fibril transition is nucleation-dependent and that protofibril winding is involved in that transition. Fibril unwinding and branching may be essential for the post-nucleation growth process. The protofibrillar assembly intermediate is a potential target for AD therapeutics aimed at inhibiting amyloid formation and AD diagnostics aimed at detecting presymptomatic disease.
James D. Harper, Charles M. Lieber, Peter T. Lansbury (1997). Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-β protein. Chemistry & Biology, 4(12), pp. 951-959, DOI: 10.1016/s1074-5521(97)90303-3.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
1997
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Chemistry & Biology
DOI
10.1016/s1074-5521(97)90303-3
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access