0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEnhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Paraná Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this material, the relative contribution of soil carbonation and enhanced weathering, and the potential carbon dioxide removal of Sao Paulo agricultural land through enhanced weathering of basalt rock. \n \nOur results show that enhanced weathering and carbonation respectively emit around 75 and 135 kg carbon dioxide equivalent per tonne of carbon dioxide equivalent removed (considering a quarry to field distance of 65 km). We underline transportation as the principal process negatively affecting the practice and uncover a limiting road travel distance from the quarry to the field of 540 ± 65 km for carbonation and 990 ± 116 km for enhanced weathering, above which the emissions offset the potential capture. Regarding Sao Paulo State, the application of crushed basalt at 1 t/ha to all of the State's 12 million hectares of agricultural land could capture around 1.3 to 2.4 Mt carbon dioxide equivalent through carbonation and enhanced weathering, respectively. \n \nThis study suggests a lower sequestration estimate than previous studies and emphasizes the need to consider all process stages through a Life Cycle Assessment methodology, to provide more reliable estimates of the sequestration potential of greenhouse gas removal technologies.
David Lefebvre, Pietro Goglio, Adrian Williams, David A.C. Manning, Antônio Carlos de Azevedo, Magda Bergmann, Jeroen Meersmans, Pete Smith (2019). Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil. , 233, DOI: https://doi.org/10.1016/j.jclepro.2019.06.099.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.jclepro.2019.06.099
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access