0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCurrent trends point to a not-too-distant future with qualitatively advanced interactions between humans and social robots. It is critical to consider the possibility of forming meaningful social relationships with robots when defining the future of human-robot interactions, as well as studying how these interactions will evolve to the point where humans are unable to distinguish between humans and robots in urban transportation. In this study, the advantages of using social robots in urban transportation are prioritized by using a multi-criteria decision-making tool, which consists of two consecutive stages, namely: i) a novel fuzzy sine trigonometry based on the logarithmic method of additive weights (fuzzy ST-LMAW) that is proposed to calculate the criteria weights; ii) a nonlinear fuzzy Aczel-Alsina function based the weighted aggregate sum product assessment (fuzzy ALWAS-WASPAS) that is developed to select and rank the alternatives. The proposed model enables flexible nonlinear processing of complex and uncertain information encountered in real applications. A case study is developed to rank three alternatives with twelve sub-criteria grouped into four aspects using the proposed method. The results show that the most advantageous alternative is to replace people with social robots as safety drivers in level four autonomous vehicles due to their possible impact on transportation.
Muhammet Deveci, Dragan Pamučar, Ilgın Gökaşar, B. B. Zaidan, Luis Martı́nez, Witold Pedrycz (2023). Assessing alternatives of including social robots in urban transport using fuzzy trigonometric operators based decision-making model. , 194, DOI: https://doi.org/10.1016/j.techfore.2023.122743.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.techfore.2023.122743
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access