0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis work presents an interdisciplinary approach combining materials science, ultrasonication, artistic expression, and curatorial practice to develop and investigate novel composites. The focus of the approach is incorporating graphene oxide (GO) into kaolin and exploring its effects on material properties. The composites were prepared with varying GO concentrations and sonication times, and their mechanical, thermal, and morphological characteristics were evaluated. The results reveal that the addition of 0.5 wt % GO, combined with a sonication time of 10 min, leads to the highest storage modulus and improved thermal stability. Ultrasonication proved to be an effective method for dispersing and distributing GO particles within the kaolin matrix, resulting in an enhanced material performance. Furthermore, the application of novel composites provided by Prvački adds a unique dimension to the study. Through the artistic interpretation, the tactile qualities and aesthetic potential of the composites are explored, shedding light on the transformative power of materials and cultural significance organized as part of an artist-in-residence commission, introduced in conjunction with the NUS Public Art Initiative. This interdisciplinary collaboration accompanied by an exhibition at the NUS Museum demonstrates the value of merging scientific research, technological advancements, and artistic exploration.
Jiqiang Wu, Maxim M. Trubyanov, Delia Prvački, Karen Lim, Daria V. Andreeva, Konstantin ‘kostya’ Novoselov (2024). Art and Science of Reinforcing Ceramics with Graphene via Ultrasonication Mixing. ACS Omega, 9(42), pp. 42944-42949, DOI: 10.1021/acsomega.4c05748.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
ACS Omega
DOI
10.1021/acsomega.4c05748
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access